
International Journal of Theoretical Physics, Vol. 45, No. 8, August 2006 ( C© 2006)
DOI: 10.1007/s10773-006-9134-z

Glafka 2004: Generalizing Quantum Mechanics
for Quantum Gravity1

James B. Hartle2

Received september 23, 2007; Accepted October 23, 2007
Published Online: Septemebr 29, 2007

Familiar quantum mechanics assumes a fixed spacetime geometry. Quantum mechanics
must therefore be generalized for quantum gravity where spacetime geometry is not
fixed but rather a quantum variable. This extended abstract sketches a fully four-
dimensional generalized quantum mechnics of cosmological spacetime geometries that
is one such generalization.
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How do our ideas about quantum mechanics affect our understanding of
spacetime? This familiar question leads to quantum gravity. This talk addressed
a complementary question: How do our ideas about spacetime affect our under-
standing of quantum mechanics?

Familiar non-relativistic quantum theory illustrates how quantum mechanics
incorporates assumptions about spacetime. The Schrödinger equation governs the
evolution of the state between measurements

ih
∂ψ

∂t
= Hψ . (1a)

The state vector is “reduced” at the time of a measurement according to the second
law of evolution:

ψ → Pψ

||Pψ || (1b)

where P is the projection on the outcome of the measurement. Both of these laws
of evolution assume a fixed background spacetime. A fixed geometry of spacetime

1 This contribution to the proceedings of the Glafka Conference is an extended abstract of the author’s
talk there. More details can be found in the references cited at the end of the abstract expecially
(Hartle, 1995).
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is needed to define both the t in the Schrödinger equation and the spacelike surface
on which the state vector is reduced.

But, in quantum gravity, the geometry of spacetime is not fixed. Rather
geometry is a quantum variable, fluctuating and generally without a definite value.
There is no fixed t . Quantum mechanics must therefore be generalized to deal with
quantum spacetime. This is sometimes called the ‘problem of time’ in quantum
gravity.

Already our ideas about quantum theory have evolved as out ideas about
spacetime have changed. Milestones in the evolution of our concepts of space
and time include: the separate space and absolute time of Newtonian physics,
Minkowski spacetime with different times in different Lorentz frames, the curved
but fixed spacetime of general relativity, the quantum fluctuations of spacetime
in quantum gravity, and the ideas of string/M-theory and loop quantum gravity
that spacetime is an approximation to something more fundamental. Changes in
quantum theory have reflected this evolution. Non-relativistic quantum mechanics
incorporates Newtonian time in the Schrödinger equation and the second law of
evolution. Any one of the possible timelike directions in Minkowski space can be
used to describe the unitary evolution of quantum fields and the results of different
choices are unitarily equivalent. Quantum field theories in curved spacetimes based
on different foliations by spacelike surfaces are not generally unitarily equivalent.
In quantum gravity there is no fixed spacetime through which a state can unitarily
evolve. Quantum mechanics therefore needs to be generalized for quantum gravity
so that it does not require a fixed spacetime foliable by spacelike surfaces. And,
if spacetime is not fundamental, quantum mechanics will certainly need to be
generalized for whatever replaces it.

However, familiar quantum mechanics also needs to be generalized for cos-
mology. This generalization is needed so that quantum theory can apply to closed
systems such as the universe as a whole containing both observers and observed,
measuring apparatus and measured subsystems (if any). These two generaliza-
tions can be connected in a common framework called generalized quantum
theory which is abstracted from the consistent (or decoherent) histories formula-
tion of the quantum mechanics of closed systems (Griffiths, 1984; Omnès, 1994;
Gell-Mann and Hartle, 1990).

The principles of generalized quantum mechanics were introduced in Ref.
(Hartle, 1991a) and developed more fully in Hartle (1995) for example. The
principles have been axiomatized in a rigorous mathematical setting by Isham,
Linden and others (Isham, 1994; Isham and Linden, 1994). Three elements are
needed to specify a generalized quantum theory:

1. The sets of fine-grained histories. These are the most refined possible
description of a closed system.
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2. The allowed coarse grainings. A coarse graining of a set of histo-
ries is generally a partition of that set into mutually exclusive classes
{cα}, (α discrete) called coarse-grained histories. The set of classes con-
stitutes a set of coarse-grained histories with each history labeled by the
discrete index α.

3. A decoherence functional defined for each allowed set of coarse-grained
histories which measures the interference between pairs of histories in
the set and incorporates a theory of the initial condition and dynamics
of the closed system. A decoherence functional D(α′, α) must satisfy the
following properties.
(i) Hermiticity:

D(α′, α) = D∗(α, α′) (2a)

(ii) Positivity:

D(α, α) ≥ 0 . (2b)

(iii) Normalization: ∑
α′α

D(α′, α) = 1 . (2c)

(iv) The Principle of Superposition:
If {c̄ᾱ} is a coarse graining of a set of histories {cα}, that is, a further
partition into classes {c̄ᾱ}, then

D(ᾱ′, ᾱ) =
∑
α′∈ᾱ′

∑
α∈ᾱ

D(α′, α) . (2d)

Once these three elements are specified the process of prediction proceeds as
follows: A set of histories is said to (medium) decohere if all the “off-diagonal”
elements of D(α′, α) are negligible. The diagonal elements are the probabilities
p(α) of the individual histories in a decoherent set. These two definitions are
summarized in the one relation

D(α′, α) ≈ δα′αp(α) . (3)

As a consequence of (3) and properties (i)–(iv) above, the numbers p(α) lie
between zero and one, sum to one, and satisfy the most general form of the
probability sum rules

p(ᾱ) =
∑
α∈ᾱ

p(α) (4)

for any coarse graining {c̄ᾱ} of the set {cα}. The p(α) are therefore probabilities.
They are the predictions of generalized quantum mechanics for the possible coarse-
grained histories of the closed system that arise from the theory of its initial
condition and dynamics incorporated in the construction of D.
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Feynman’s 1948 spacetime formulation of quantum mechanics (Feynman,
1948) supplies one route to constructing a fully four-dimensional generalized
quantum theory of spacetime geometry. The quantum mechanics of a non-
relativistic particle moving in one dimension (x = x(t)) between time t = 0 and
time t = T provides the simplest example. The particle’s dynamics is assumed
specified by an action functional S[x(t)] and its initial quantum state is assumed
to be a particular state vector |ψ〉.

1. Fine-grained histories: These are all paths x(t) between t = 0 and t = T .
2. Coarse-grainings: An allowed coarse graining is any partition of the

paths into an exhaustive set of exclusive classes cα , (α discrete), each
class being a coarse-grained history. For instance, the paths could be
partitions by specifying a set of spatial intervals �i , i = 1, 2, . . . and
giving which two intervals α = (i, j ) the particle passes through at two
times. An example of a spacetime coarse graining is provided by spec-
ifying a spacetime region R and partitioning the paths into the class
c0 which never pass through R and the class c1 that pass through R

sometime.
3. Decoherence functional: In a given set of coarse-grained histories {cα}

construct branch state vector |ψα〉 for each coarse grained history by
summing exp(iS) over all the paths in cα and applying that to the initial
state |ψ〉, viz.

|ψα〉 ≡
∫

cα

δx exp{iS[x(t)]/S[x(t)]/h}|ψ〉. (5a)

The decoherence functional is

D(α′, α) = 〈ψα′ |ψα〉. (5b)

This spacetime formulation of non-relativistic quantum mechanics is easy to
visualize, fully four-dimensional, manifests Lagrangian symmetries, and has a
close connection to the semiclassical approximation. It incorporates both unitary
evolution and the reduction of the state vector in a unified way (Caves, 1986,
1987).

A spacetime formulation may be equivalent to usual Hamiltonian quantum
mechanics when the fine grained histories are single valued in a time as in non-
relativistic quantum mechanics and Minkowski space quantum field theory. This
fully four-dimensional formulation generalizes usual quantum mechanics when
the histories do not have this property, for instance if there is no fixed time or the
histories are not single valued in time. But in those cases we cannot expect to find
a notion of state of the system at a moment of time or its unitary evolution through
time.
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The talk illustrated these ideas with a series of model situations:

• Spacetime alternatives extended over time such as those defined by field
averages over spacetime regions with extent both in time and space (Hartle,
1991b).

• Time-neutral quantum mechanics without a quantum mechanical arrow
of time but with both initial and final conditions (Gell-Mann and Hartle,
1994).

• Quantum field theory in fixed background spacetimes that are not foli-
able by spacelike surfaces such as spacetimes with closed timelike curves,
spactimes exhibiting topology change, and evaporating black hole space-
times (Hartle, 1994, 1998).

• Histories that move backward in time such as those of a single relativistic
particle moving in four-dimensional flat spacetime (Hartle, 1995).

For each of these examples the three ingredients of generalized quantum theory
were exhibited—fine grained histories, coarse graining, and decoherence func-
tional.

Building on the lessons of these examples, a generalized quantum mechanics
of quantum cosmological spacetime geometry can be sketched. The fine grained
histories are closed four-dimensional cosmological metrics with four-dimensional
matter field configurations upon them. The allowed coarse grainings are partitions
of these histories into four-dimensional diffeomorphism invariant classes cα . A
decoherence functional D(α′, α) is constructed using amplitudes defined by sums
over the histories in the classes cα′ and cα , initial and final wave functions of the
universe, and an inner product linking amplitudes and wave functions.

The semiclassical limit for geometry is provided by the steepest descents
approximations to the sums over metrics. What remains is a usual quantum field
theory in the background spacetime described by the metric which gives the biggest
contribution to these sums. Thus, familiar familiar quantum mechanics is recovered
for those initial conditions and those coarse-grainings in which spacetime is fixed,
classical, and can supply the necessary time for unitary evolution.

A few points summarize the conclusion of the talk:

• Quantum mechanics can be generalized so that it is free from a fundamental
notion of measurement, free of the need for a fixed background spacetime,
and free from the ‘problem of time.’

• General relativity as a theory of four-dimensional spacetime is more gen-
eral than its 3 + 1 initial value problem. Simlarly, a fully four-dimensional
formulation of quantum theory is more general than its 3 + 1 formulation
in terms of states evolving unitarily through spacelike surfaces in a fixed
background spacetime.
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• In a four-dimiensional generalized quantum mechanics of spacetime ge-
ometry there is no ‘problem of time,’ but there are also typically no states
at a moment of time.

• In the context of a fully four-dimensional formulation of quantum theory,
the familiar 3 + 1 quantum mechanics of states evolving unitarily through
spacelike surfaces is an approximation that is appropriate for those initial
conditions and those coarse grained descriptions in which spacetime ge-
ometry behaves classically and can supply the notion of time necessary to
describe the evolution.
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